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Summary. Tests for linkage based on covariances among 
relatives in self-pollinated species are usually based upon 
an assumption that epistasis is not important. This study 
was conducted to determine the impact of epistasis on, 
and to investigate the sensitivity of, such tests. Thirty 
covariances were calculated for each of ten non-epistatic 
and ten epistatic genetic models with varying probabili- 
ties of recombination between two coupling or repulsion 
loci. Each set of covariances was tested for linkage by 
comparing covariances calculated for the model with 
those expected for an additive-dominance model with no 
linkage. Results showed that the test for linkage is quite 
insensitive to the effects of linkage due to the dispropor- 
tionate influence of inbreeding. Repulsion linkages 
should be easier to detect than coupling linkages for all 
models. Epistasis was found to mimic or counteract the 
effects of linkage. Tests for linkage based on covariances 
within a hierarchical mating design appear to be insensi- 
tive to linkage and may confuse the effects of linkage and 
epistasis. 
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Introduction 

Linkages among genes at different loci can alter genetic 
variances of quantitative traits and can affect correla- 
tions between traits. Theoretically, coupling linkages 
among genes that affect a single quantitative trait will 
result in increased genetic variance, while repulsion link- 
ages will result in decreased genetic variance. Genetic 
correlations will be positive with coupling linkages be- 
tween desirable alleles for each of two traits, and negative 

with repulsion linkages. In general, coupling linkages 
between desirable alleles for one or more traits will in- 
crease response to selection, while repulsion linkages will 
restrict response. 

Linkage disequilibrium must be anticipated in self- 
pollinated crops where selected populations in most 
breeding programs are developed by inbreeding after a 
cross of two (single cross or backcross), three (three-way 
cross) or four (double cross) inbred lines. Whether or not 
linkages among genes are primarily in the coupling or 
repulsion phase will depend upon the nature of associa- 
tion among genes in the inbred parents. A major issue in 
crop improvement concerns whether or not intermating 
should be used to help break linkage groups (Hanson 
1959; Pederson 1974). Proper resolution of this issue 
could be facilitated if one could estimate the extent and 
phase of linkages among genes that affect quantitative 
traits. 

Two basic approaches have been used to assess the 
importance of linkage in self-pollinated species. One ap- 
proach is based on theoretical considerations of the im- 
pact of linkage on genetic variances and correlations, and 
consists of comparing estimates of these parameters in 
inbred and random-mated populations. Miller and 
Rawlings (1967) showed that natural intercrossing after 
a cross of two contrasting inbred lines of cotton (Gossy- 
plum hirsutum L.) helped reduce linkage disequilibrium 
to the extent that genetic variance was decreased in six 
traits and increased in one. Genetic correlations in all 
cases approached what would be expected in an equilib- 
rium population. Meredith and Bridge (1971) used man- 
ual intermating in cotton and found that genetic correla- 
tions were generally reduced in magnitude. 

While comparisons of inbred and intermating popu- 
lations within the same cross provide a sound basis for 
detecting linkages among genes, the method is generally 
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too tedious in self-poll inated species, where in te rmat ing  
has to be facilitated th rough  h a n d  crossing. 

The second me thod  for detect ing l inkage is th rough  
compar i son  of  covariances between relatives in a hierar-  
chical set of  inbred  p rogeny  f rom a cross of two inbred  
lines. Ma the r  and  Jinks (1971, pp. 187-201)  discussed a 
test for presence of  l inkage a m o n g  genes cont ro l l ing  ear 
con fo rma t ion  in bar ley (Hordeum vulgare L.). The analy-  
sis was based on  a cons idera t ion  of  var ia t ion  a m o n g  F 2 
plants  and  a m o n g  F 3 plants  wi th in  F 2 families, as well as 
on  covariances between F 2 plants  and  the means  of  their 

F 3 progenies.  
Gates  et al. (1960) proposed  to test for the presence 

of  l inkage by compar ing  estimates of  numerous  covari- 
ances wi thin  a hierarchical  set with those expected in the 
absence of  l inkage. The me thod  is equivalent  to that  of  
Mathe r  and  Jinks (1971), bu t  utilizes a larger set of  co- 
variance estimates. Gates  et al. (1960) used their own test 
to show that  repuls ion l inkages were i mp o r t an t  a m o n g  
genes cont ro l l ing  height and  yield in a soybean (Glycine 

max  L.) cross, while coupl ing  l inkages were i m p o r t a n t  
among  genes cont ro l l ing  f lowering time. The me thod  has 
since been used by Croissant  and  Torrie (1971) to inves- 
tigate l inkage in soybean,  and  by VandeLogt  et al. (1984) 
to s tudy two barley crosses. 

This me thod  of  detect ing l inkage relies on  a compar -  
ison of  est imated covariances between relatives with 
those expected in the absence of  l inkage and  epistasis. 
Ma the r  and  Jinks (1971) and  Opsahl  (1956) have shown 
that  it is no t  possible to clearly differentiate between the 
effects of  l inkage and  epistasis on  different genetic co- 
variances.  There is a possibil i ty that  certain types of  epis- 
tasis may  affect genetic variances and  genetic correla- 
t ions in the same way as does linkage, while the effects of  
other  types of  epistasis m a y  counterac t  those of  l inkage. 
Fo r  this reason,  the purpose  of  this research was to inves- 
tigate the extent  to which epistasis can mimic  or counter -  
act l inkage in its con t r ibu t ion  to covariances a m o n g  rel- 
atives in self-poll inated species. 

Theory 

Let f i  be the frequency of genotype i in the F k generation after 
selfing a cross between two inbred lines. Further, let X i be the 
average genotypic value of all progeny of genotype i following 
a further n-k generations of selfing, and let Y~ be the average 
genotypic value of all progeny of genotype i after a further n'-k 
generations of selfing. Then, X~ represents the mean genotypic 
value of an Fk-derived F~ line, and and Yi represents the mean 
genotypic value of the related Fk-derived F,, line. The covariance 
between pairs of lines, each developed from the same plant in F k, 
can be written as Coy (k, 1; n, n') (Gates et al. 1960). By defini- 
tion. 

Coy (k, 1; n, n')= Zf i  X i Yi --(Zfi  Xi) ( Z d  I9, 

where ~2 indicates summation over all possible genotypes in Fk. 

Table 1. Expected frequencies of ten genotypes after 
tions of setting of a coupling (6 = 1) or repulsion 
double heterozygote 

s genera- 
(6 = - 1 )  

Genotype Expected frequency after s generations of selfing 

AB/AB (1 +6) a/4+ ( 1 -6 )  pa/2-b /2-g)c+d/4  
AB/Ab b/2 - d / 2  
Ab/Ab ( 1 - 6 )  a/4+ ( l+6)  pa /2 -b /2+6c+d/4  
AB/Ab b/2 - d/2 
AB/aB d/2 + 6e/2 
Ab/aB d/2 - 6e/2 
Ab/ab b/2 - d / 2  
aB/aB ( 1 - 6 )  a/4+ (1 +6) pa /2 -b /2+6c+d/4  
aB/ab b/2 - d / 2  
ab/ab (1 + 6) a/4 + (1 -- 6) pal2 - b/2 - 6c + d/4 

where p = probability of recombination between A-a and B-b, 
a = 1/[1 +2p], 
b = 2  -s, 
c = (1 +2p) [ (1-2p)/21 s/4(1 +2p), 
d =  [ (1-2p+2p2) /2]  s, and 
e = (0.5-p)S 

In this expression, the second argument (1 in this case) 
provides facility for subdividing the covariance into portions 
related to various subpopulations of Fk, i.e., Coy (k, 1; n, n ' )= 
32k Cov (k, k -  1; n, n') for k >  1 (Gates et al. 1960). I fn '  =n,  then 
the expression represents the genetic variance among Fcderived 
F,, lines. Furthermore, if k=n  = n', then the expression becomes 
the total genetic variance in the F k generation. Terminology used 
by Mather and Jinks (1971) is less general than that used by 
Gates et al. (1960). V(k_ 1) F, of Mather and Jinks can be written 
as Cov (k, k -  l; n, n) and W(k 1)F,,' as C o v ( k , k - 1 ; n , n ' ) .  
Mather and Jinks (1971) refer to k - 1  as the rank of the corre- 
sponding variance or covariance, and n or n' as its generation. 
Rank reflects the number of opportunities for recombination 
through gametogenesis. 

It is clear that epistasis cannot affect of genotypic frequen- 
cies, f~, and can therefore have an effect on covariances only 
through its impact on genotypic means X~ and Y~. Linkage, on 
the other hand, can affect all three components of covariances, 
and is expected to have a major impact on genotypic frequencis. 
Mather and Jinks (1971) indicated that the test for linkage is 
primarily a test for heterogeneity of estimates of additive and 
dominance variance from covariances of different rank. 

We proceed now to develop a general expression for 
Coy (k, 1; n, n'), the covariance between progenies of a coss be- 
tween two homozygous parents, for a two-locus genetic model 
with arbitrary linkage and epistasis. The frequencies of ten pos- 
sible genotypes for two linked loci in the Fk generation after 
selfing a cross between two inbred lines were given by Nelder 
(1952) and are presented in a modified form in Table 1. 

With nine distinct genotypes, genotypic values can be ex- 
pressed in terms of nine parameters. The choice of parameters 
is somewhat arbitrary. In this research, we use the F~-metric 
with values of each genotype represented as linear functions of 
m, da, db, h,, hb, iab, Zb, Jb~ and lab as described by Mather an 
Jinks (1971, p. 83). 

Mean genotypic values of families produced by s genera- 
tions of selfing individuals of each of ten different genotypes are 
given in Table 2. These expectations allow for arbitrary levels of 
linkage, arbitrary types of two-locus epistasis, and an arbitrary 
number of generations of selfing. 



Table 2. Mean genotypic values of progeny after s generations 
of selfing for each of ten genotypes 

Genotype Mean of progeny after s generations of selfing 
of parent 

A B / A B  m + d a q - d b q - i a b  

AB/Ab m+daq-O.5Shb+O.5Sjab 

Ab/Ab m+cla--db--i~b 
AB/aB m+O.5~h~+db+O.5*jbo 
AB/ab m+O.5"h,+O.5~hb+K,i,b+K2l, b 
Ab/aB rn+O.5*h,+O.Yhb-K~ i~b+K2 l,b 
Ab/ab m + 0.5 ~ h~ - rib-- 0.5sjb~ 

aB/aB m--  d, + d b - i~b 
aB/ab m - -  d a -1- 0 . 5  s h b - -  O. 5s jab  

ab/ab m -  4 -  db + gb 

where K~ = (1--2p) [1-(0.5--p)*]/(1 +21)), and 
K 2 = (0.5--p+p2)" 

For an arbitrary two-locus genetic model expressed in terms 
of the F~:-metric (Mather and Jinks 1971), the information in 
Tables 1 and 2 can be used to calculate expected genotypic com- 
ponents ofcovariances between relatives. For example, to calcu- 
late Cov (k, 1; n, n'), replace s in Table 1 with s = k -  1 to calcu- 
late the expected frequencies of ten genotypes in the Fk 
generation after selfing a cross of two inbred parents in coupling 
(AB/AB x ab/ab; a = l )  or in repulsion (Ab/Ab xAB/aB; 
c5 = - 1). Linkage can be specified by the probability of recombi- 
nation between two loci (p = 0.5 for no linkage, p near zero for 
tight linkage). Once the genotypic model has been expressed in 
terms of the Foo-metric (Mather and Jinks 1971), the results in 
Table 2 can be used to calculate Xi, the genotypic means of 
Fk-derived F~ lines, and Y,, the genotypic means of related Fk- 
derived F~, lines. In using Table 2, s, the number of generations 
of selfing, is taken as s = n - k  for X i and s = n ' - k  for Y~. Use of 
the definition of a covariance leads directly to the required 
expression. 

It is possible to combine the algebra of Tables 1 and 2 to 
derive a single expression for the genetic composition of 
Cov (k, 1; n, n') that would be suitable for any linkage value and 
any arbitrary two-locus genetic model. The complexity of the 
resulting expression suggests that such an approach is of little 
practical value. Because of the unwieldly expressions obtained 
for variances and covafiances under a completely general genetic 
model, Weir and Cockerham (1977) suggested use of simplifying 
assumptions for approximation in specific cases. Gallais (1974), 
in deriving a general expression for covariances between inbred 
relatives, restricted consideration to additive types of epistasis 
with arbitrary linkage. In this research, we pursued numerical 
evaluation of a specific set of covariances. 

Use of Table 1 allows one to assess the impact of linkage 
value and phase on the frequencies of genotypes in generation Fk 
after k-1 generations of selfing from a cross between two ho- 
mozygous lines. Table 2 then allows one to incorporate the ef- 
fects of epistasis, as well as linkage, on the genotypic means of 
Fk-derived F, lines. Any covariance between progenies of a single 
cross can be calculated from these two sets of results. 

In some cases, it may be desirable to calculate covariances 
within subpopulation, and to then average those values over all 
such subpopulations. Gates et al. (1960) used the term 
Coy (k, k'; n, n') to indicate the average of covariances between 
Fk-derived F n and F~-derived F,, lines within subpopulations 
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derived from individuals in generations/:i,, (1 < k' < k < n _< n'). 
The hierarchical nature of the mating scheme leads to the rela- 
tionships Cov (k, k'; n, n ' )=Cov (k, 1; n, n ' ) - C o v  (k', 1; n, n'). 
This relationship provides a basis for calculating any covariance 
from considerations given above. 

The test for linkage described by Gates et al. (1960) is based 
upon a comparison of estimated Cov (k, 1; n, n'), with approxi- 
mate expectations derived under the assumption of no epistasis. 
Briefly, the method consists of using estimated covariances from 
a hierarchical mating structure as the response variable (Y) in a 
multiple regression analysis with six predictor variables. The six 
predictor variables (Gates et al. 1960) are: 

X 1 =2--22-k,  
X2 =(2 ~-~ - 1)/(2 "+"'-4), 
X 3 = k/(U- 3)_ 4, 
Xr  - [ 2 + 2  k t (k_3)1/(2,+,'-4), 
X s = 8 - (k 2 - k + 2)/(2 k- 3), and 
X 6 = [2 k-2  (k 2 - -7k-~  14]/(2 "+r  -4). 

Provided that estimates of at least seven covariances are 
available for analysis, the sum of squares for deviations from 
regression of covariances y on X , - X  6 provides an estimate of 
error variation that can be used to test for linkage. The difference 
in the residual sum of squares for regression on X 1 and X 2 and 
the residual sum of squares for regression on X 1-X2 provides a 
sum of squares for linkage with four degrees of freedom. All 
regressions are calculated with an intercept of zero (Gates et al. 
1960). In the absence of epistasis, significant regression on pre- 
dictors X3, X4, Xs or X 6 indicates linkage (Gates et al. 1960). 
The signs and magnitudes of significant regressions on these 
predictors can provide evidence as to whether linkages are pre- 
dominantly in the coupling or repulsion phases. 

Mather and Jinks (1971) used a similar approach to test for 
linkage. They used separate estimates of environmental variance, 
rather than deviations from regression of X1 -X6 ,  as the denom- 
inator for testing significance of linkage. Furthermore, they re- 
stricted consideration to covariances in early generations 
(Mather and Jinks 1971, pp. 187-201), while the method of 
Gates et al. (1960) can be generalized to any generation. The 
linkage tests of Gates et al, (1960) and Mather and Jinks (1971) 
are both based upon analysis of deviations of covariances from 
what is expected in the absence of linkage and epistasis. 

In the absence of linkage and epistasis, 

Coy (k, 1; n, n ' )=Xl  ~2+X2 G~, 

where a~ is the additive genetic variance and a~ is the domi- 
nance genetic variance (Gates et al. 1960). In the absence of 
environmental variation, the test for linkage requires that the 
sum of squares due to regression covariances on X,  and X 2 be 
significantly less than the uncorrected sum of squares of covari- 
ance. 

Computations 

Twenty  genetic models  (Table 3), wi th  vary ing  levels of  

addit ive,  dominance ,  and  epistat ic  effects, were eva lua ted  

at different levels of l inkage in bo th  coupl ing  and repul- 

sion crosses, to de te rmine  the impac t  of epistasis on the 
test for l inkage and to assess the sensitivity of the test. The  

re la t ionships  shown in Table 3 were der ived f rom the 

F~o-metric (Mathe r  and J inks 1971). The  relat ive impor -  

tance  of  epistasis in each  of  these 20 mode ls  was evaluat -  

ed by cons ider ing  the con t r ibu t ion  to to ta l  var ia t ion  in an 
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Table 3. Relationships among gene effects, F 2 segregation ratios, and proportions of total variation in an equilibrium F 2 population 
accounted for by additive, dominance, and epistatic variation for each of 20 genetic models 

Model no. Relationships Segregation ratio Proportion of variation in F 2 

Additive Dominance Epistatic 

1 d, = rib; h, = h b = i,b =Jab =Jb, = l,b = 0 1:4:6:4:1 1.00 0.00 0.00 
2 d a = d b = h = h b ;  i ,b=j~b=jba=/ab=O 9:6:1 0.67 0.33 0.00 
3 d, = d b = - ha = - hb; i,~b =.~b =Jb, = l,b = 0 1:6:9 0.67 0.33 0.00 
4 2d, = 2d b = ha = hb; i,,b =Jab =Jba = 1,b = 0 4:4: t :4:2:1 0.33 0.67 0.00 
5 2d,  = 2d  b = - h ,  = - h b; iab =Jab =Jba = lab = 0 1:2:4:1:4:4 0.33 0.67 0.00 
6 2 d = d  b ; h a = h b = i a b = L b = J b a = l , b = O  1:2:3:4:3:2:1 1.00 0.00 0.00 
7 2d,, = d b = 2h, = h b; i,, b =J,,b =Jb, = lab = 0 9 : 3 : 3 : 1 0.70 0.30 0.00 
8 2d  a = d b = - 2 h ,  = - h b ;  iab =Jab =Jb, = lab = 0 1:3:3:9 0,70 0.30 0.00 
9 4d  a = 2d  b = 2h,  = h b; iab =J,,b =Jba = l,~b = 0 t :2:2:4:1:2: t :2:1 0.30 0.70 0.00 

10 4da= 2db = --2ha=--hb;  i ~b =Jab =Jb=l ,b=O 1:2:1:2:1:4:2:2:1 0.30 0.70 0.00 
11 d , = d b = h , = h b = i ~ b = Z b = J b , = I a b  9:7 0.57 0.28 0.15 
t 2 da =db = i,a = lab; h, = h b =Lb =Jba = 0 t :8:6 0.70 0.09 0.21 
13 d a = d b = h  = h b =  --iab = - - L b =  -- jba= --laa 15:1 0.26 0.13 0.61 
14 -- d,, = da = - ha = ha = i,~a =La =Jb, = l,b t 3:3 0.49 0.26 0.25 

15 db= hb = iab =Jab =Jb, =/,a; d, = ho = 0 9:3:4 0.51 0.26 0.23 
16 d, /3  = h a = d j 3  = h b = i~b =J,b =Jb, = lab 12:3:1 0.60 0.30 0.10 
17 - d = d b = - - h = i , b = J b ~ ;  h b = J , b = l , b = O  7:6:3 0.72 0.11 0.17 
t 8 d ,  = d J 3  = h ,  = hb/5 = i,b =j ,b /3  =Jb, = l j 3  6:3:3:4 0.39 0.52 0.09 
19 d = h a = h b = i , b  = - - j a J 4 = j a =  --l~b/4; db=0 7:4:3:2 0.14 0.11 0.75 
20 d,~ = d b = h,, = h b = i,b/2 = L b / 2  = j b j 2  = I,b/2 9:1:6 0.48 0.24 0.28 

equi l ib r ium F 2 popu la t ion  due to additive, dominance ,  
and  epistatic effects (Table 3). Models  I th rough 10 were 
non-epis ta t ic  and  differed only in  the levels of d om inance  
and  the size of effects at the two loci. The remain ing  ten 
models  (Models 11-20)  included var ious levels of epista- 
sis and  were chose to represent  k n o w n  models  of epista- 
sis. Mode l  13 (duplicate epistasis) and  Mode l  19 were the 
most  epistatic of the models  considered, with epistasis 
account ing  for more  than  60% of the equi l ib r ium F2 

genetic var iance in bo th  cases. 
Fo r  each of the 20 genetic models,  30 Coy (k,  k'; n, n') 

were calculated for 15 levels of coupl ing  and  repuls ion 
l inkages varying  from p = 0.005 to p = 0.50. Covar iances  
were those used by Gates  et al. (1960) in testing for l ink-  
age in soybean,  an d  consisted of par t ia l  combina t ions  of 
k = 2 t o 6 ,  n = k t o  7 a n d n ' = n t o  7. For  each set of 30 
covariances,  mul t ip le  regression (with intercept  = 0) of co- 
variances on  predictors  X 1 and  X 2 was calculated. The 
sum of squares due to regression was expressed as a 
p ropo r t i on  of the total  uncorrec ted  sum of squares of 
covariances.  

Results and discussion 

Propor t ions  of the total  uncorrected sums of squares of 
covariances a t t r ibu tab le  to regression on X x a n d  X2 were 

general ly close to un i ty  for all models  and  all probabi l i -  
ties of r ecombina t ion  between the two loci (Table 4). Re- 
sults can be adequate ly  represented by presenta t ion  of 7 
of the 15 cases that  were evaluated.  F o r  models  wi thout  
epistasis (Models 1 th rough 10), additive and  dominance  
effects accounted  for all of the sums of squares when  there 
was no  linkage. C o m p a r i s o n  of the left side of Table 4 
with its r ight  side showed that  repuls ion l inkages general-  
ly led to greater deviat ions  from values expected in the 
absence of l inkage than  did coupl ing  linkages. 

Except for Model  1, all non-epis ta t ic  models  showed 
greatest devia t ions  when  probabi l i t ies  of r ecombina t ion  
were at in termedia te  levels. In  these cases, tight l inkages 
make  the two-locus model  appear  similar to a single 
locus, while probabi l i t ies  of r ecombina t ion  close to 0.5 
resembled two un l inked  loci. Model  1 consists of two loci 
with equal  and  addit ive effects. Wi th  this model,  dis- 
crepancies due to l inkage were large with tight repuls ion 
l inkages than  with in termedia te  l inkages This difference 
from the typical pa t te rn  for non-epis ta t ic  models  p roba-  
bly reflects the fact that  inbreeding  will have less of an  
impact  on the re la t ionship between covariances for an  
additive model  than  for any  model  that  includes domi-  

nance  genetic effects. 
F o r  Models  1 -10 ,  the greatest discrepancy from an  

add i t ive -dominance  model  was observed with tight re- 
pu ls ion  l inkages for Model  1 (p ropo r t i on=0 .968  for 
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Table 4. Proportion of the total uncorrected sum of squares of 30 covariances that can be attributed to additive and dominance effects 
for 20 models and various probabilities of recombination 

Model" Probability of recombination 

Repulsion Coupling 

0.025 0.10 0.30 0.50 0.30 0.10 0.025 

1 0.9680 0.9776 0.9946 1.0000 0.9986 0.9995 1.0000 
2 0.9927 0.9845 0.9952 1.0000 0.9986 0.9995 1.0000 
3 0.9927 0.9845 0.9952 1.0000 0.9986 0.9995 1.0000 
4 0.9993 0.9951 0.9966 1.0000 0.9987 0.9995 1.0000 
5 0.9993 0.9951 0.9966 1.0000 0.9987 0.9995 1.0000 
6 0.9985 0.9942 0.9971 1.0000 0.9990 0.9996 1.0000 
7 0.9990 0.9954 0.9974 1.0000 0.9990 0.9996 1.0000 
8 0.9990 0.9954 0.9974 1.0000 0.9990 0.9996 1.0000 
9 0.9997 0.9979 0.9981 1.0000 0.9991 0.9996 t.0000 

10 0.9997 0.9979 0.9981 1.0000 0.9991 0.9996 1.0000 
t l  0.9987 0.9955 0.9965 0.9985 0.9996 1.0000 1.0000 
12 0.9814 0.9744 0.9871 0.9965 0.9998 1.0000 1.0000 
13 0.8701 0.8891 0.9376 0.9797 0.9977 1.0000 1.0000 
14 1.0000 1.0000 0.9999 0.9968 0.9864 0.9724 0.9663 
15 0.9998 0.9991 0.9981 0.9976 0.9966 0.9975 0.9995 
16 1.0000 0.9997 0.9991 0.9994 0.9997 0.9998 1.0000 
17 1.0000 1.0000 0.9999 0.9989 0.9950 0.9886 0.9910 
18 0.9999 0.9992 0.9983 0.9984 0.9991 0.9998 1.0000 
19 0.9981 0.9822 0.9145 0.8623 0.8719 0.9536 0.9953 
20 0.9982 0.9939 0.9942 0.9957 0.9969 0.9984 0.9997 

Genetic models from Table 3 

p = 0.025, Table 4). With  such small deviations from the 
non-l inkage model  (3.2% of the total  sum of squares of 
covariances), there is a question as to whether or not  
the test is sufficiently sensitive to detect linkage. In the 
study by Gates et al. (1960), l inkage was detected for 
flowering time, height, and yield. Fo r  flowering time, the 
est imated ratio of sum of squares due to regression on Xt  
and X 2 to the sum of squares due to regression on X ~ -  
X 6 is (6.1,013.51 - 4 *  64.844)/(6 * 1,013,51)= 5,818.624/ 
6,081.060=0.957. Corresponding ratios were 0.948 for 
height and 0.880 for yield. While not  strictly equivalent to 
values repor ted in Table 4, the similarity in magni tude 
serves to emphasize the observat ion that, for two-locus 
models, l inkage in the absence of epistasis has rather  little 
impact  on the relationships among covariances in a 
hierarchical mat ing design. 

In this case, inbreeding may  overpower the impact  of 
linkage on covariances. Heterozygosity decreases one-half 
in each successive generation of selfing. The effect of link- 
age can be expressed only when the double  heterozygotes 
are present. Thus, the impact  of l inkage on the covari-  
ances decreases as the generation number  increases. In 
the absence of epistasis (i,b =Jab =Jba = lab = 0), the general 
expression for Coy (k, k -  1; n, n') is found, by using the 
results of Tables I and 2, to be 

Cov (k, k - l ;  n, n') =(0.5) k-1 Dk_ 1 +(0.5) "+" '-k Hk_ 2, 

where k - 1  is the rank of the covariance (Mather  and 
Jinks 1971), 

= (d  a +db) + 2 (1--2p)  k-1 dadb, and Dk_l 2 2 
2 2 Hk_ 2=(h a +hb) + 2 ( I - - 2 p )  2 ( 1 - 2 p + 2 p 2 )  k - z h  a h b. 

The _+ sign in D k_ 1 should be + for coupling and - for 
repulsion linkages. F rom this expression, one can see that  
cross products  of additive and dominance effects at  differ- 
ent loci occur only in the presence of linkage, and that  
these cross products  decrease geometrically as the rank 
( k - 1 )  of the covariances increase arithmetically. 

Compar isons  of discrepancies due to epistasis in the 
absence of l inkage (Models 11 20 with probabi l i ty  of 
recombinat ion=0.50)  with discrepancies due to l inkage 
in the absence of epistasis (Models 1-10)  show that  cer- 
tain types of epistasis can mimic the effects of l inkage on 
the propor t ions  of the total  sum of squares a t t r ibutable  
to an addi t ive-dominance model. With  model  19, e.g., in 
the absence of linkage, only 86.23% of the total  sum of 
squares could be explained by an addi t ive-dominance 
model. With  the linkage test of Gates et al. (1960), such a 
discrepancy (13.77%) would be incorrectly a t t r ibuted to 
l inkage of non-epistat ic genes rather  than to epistatic 
interaction among unlinked genes. In this extreme case, 
epistasis of unlinked genes produced much larger effects 
on the magni tude of covariances than did l inkage of 
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genes in all non-epistatic models. Duplicate epistasis 
(Model 13) can also cause discrepancies in the absence of 
linkage that are as large as those due to linkage in non- 
epistatic models. This finding raises considerable doubt  
as to whether purported detection of linkage is, in fact, 
due to linkage or to epistasis. These results suggest that 
analysis of covariances between inbred relatives is not a 
reliable test for linkage. 

It is interesting to note that the effects of epistasis can 
sometimes cancel the effects of linkage. With Models 14 
and 17, for example, the proportions of total sum of 
squares attributable to an additive-dominance model ap- 
proached unity as the level of repulsion linkage increased 
(Table 4). This is yet another weakness of the test for 
linkage. 

This research has concerned a general treatment of 
only a two-locus model. It is felt that similar trends would 
be observed with more complex genetic models. With 
several loci, the frequency of repulsion linkages would be 
reduced, so that discrepancies due to linkage would likely 
be less than calculated for the two-locus model. It is 
unlikely that the test for linkage would be more sensitive 
for linkages among several loci than it appears to be for 
linkage between two loci. 

It is more difficult to assess the probable effects of 
multi-locus epistatic models on tests for linkage. There is 
a great difficulty in trying to define what would be rea- 
sonable epistatic interaction for a multi-locus model. 
However, Crow and Kimura (1970) argued that three-lo- 
cus and higher order interactions probably have smaller 
impact on genetic variances than interactions between 
pairs of loci. 

In this research, it was assumed that environment had 
no effect on covariances between relatives. Even if this 
were true, it would be difficult to detect linkage in any of 
the genetic models considered. With environmental vari- 
ation and genotype-environmental interaction, it would 
be even more difficult to identify patterns in estimates of 
genetic covariances that would clearly indicate the effects 
of linkage. 

This research has shown that tests for linkage based 
on analysis of covariances among relatives in a hierarchi- 
cal mating design are rather insensitive to linkage. This 
insensitivity is due in part to the overpowering effect of 
inbreeding on the relationships among the different co- 
variances that might be studied. Moreover, epistasis can 
mimic or counteract the effects of linkage, even when 
genes are not linked. For  these reasons, these types of 

tests hold little promise for clearly identifying cases in 
which linkage is important. One should proceed to test 
for linkage only after showing that epistasies is unimpor- 
tant. Unfortunately, unequivocal tests for epistasis, such 
as that decribed by Kearsey and Jinks (t968), require 
considerable effort and are only suited to a few crops. 
Perhaps the approach of comparisons among inbred and 
random-mated populations continues to be the best 
method for detecting linkage. 
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